

Chapter 8 Circle Geometry

What You'll Learn:

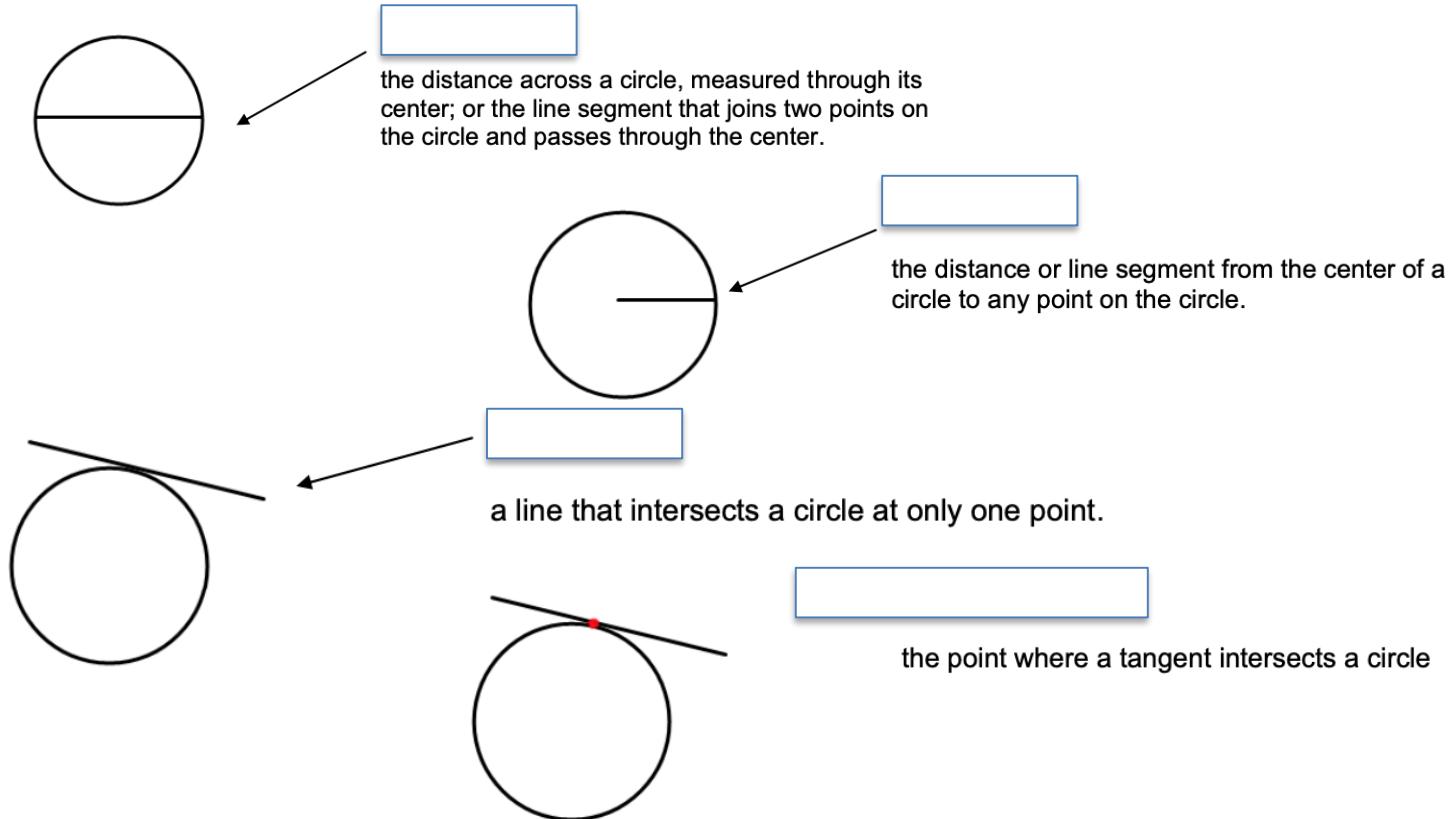
Circle Properties that Relate:

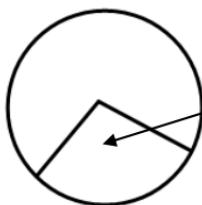
- A tangent to a circle and the radius of the circle.
- A chord in a circle, its perpendicular bisector, and the centre of the circle.
- The measure of angles in circles.

Key Vocabulary:

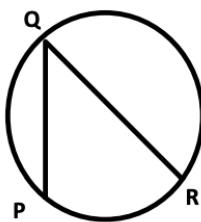
- Tangent:
- Point of Tangency:
- Chord:
- Arc:
- Minor Arc:
- Major Arc:
- Central Angle:
- Inscribed Angle:
- Subtended:
- Inscribed Polygon:
- Supplementary Angles:

Introduction: Definitions



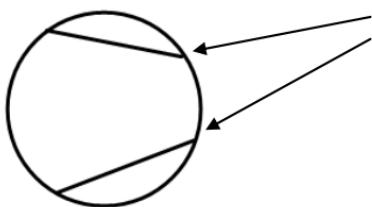


An angle whose arms are radii of a circle.

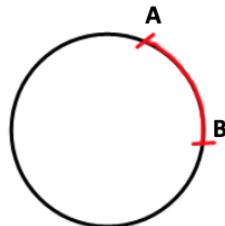


An angle in a circle with its vertex and endpoints of its arms on the circle.

For example, $\angle PQR$



a line segment that joins two points on a circle.



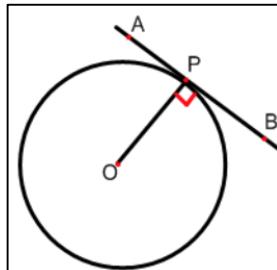
A segment of the circumference of a circle.

The shorter of two arcs between two points on a circle.
For example: \overarc{AB}

8.1 Properties of Tangents to a Circle

Section Focus:

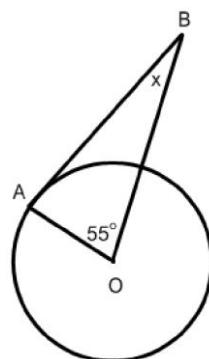
- Discover the relationship between a _____ and a _____, then solve related problems.



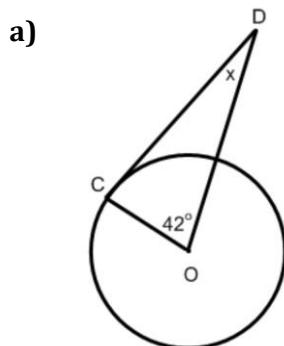
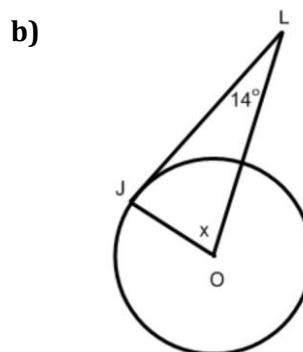
Tangent-Radius Property

A tangent to a circle is _____ at the point of tangency.
 $\angle APO = \angle BPO = 90^\circ$

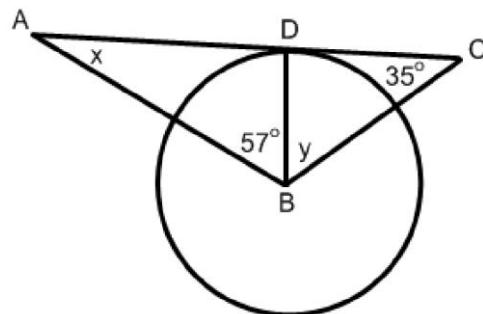
Ex 1) Point O is the centre of a circle and AB is tangent to the circle. In $\triangle OAB$, $\angle AOB = 55^\circ$. Determine the measure of $\angle OBA$.



Ex 2) Find the missing angles in the following diagrams.



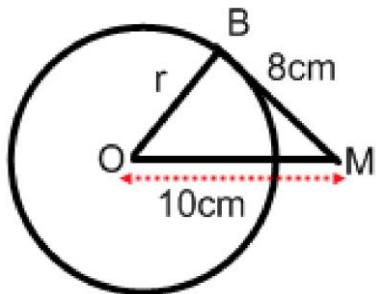
Ex 3) Since AC is a tangent, $\angle BDA = \angle BDC = 90^\circ$. Find x and y.



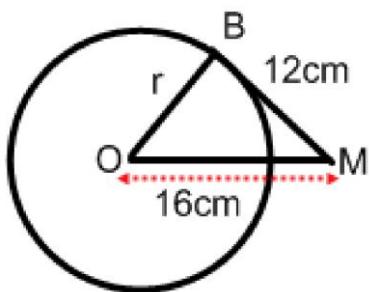
Using the Pythagorean Theorem in a Circle

Pythagorean Theorem: $a^2 + b^2 = c^2$

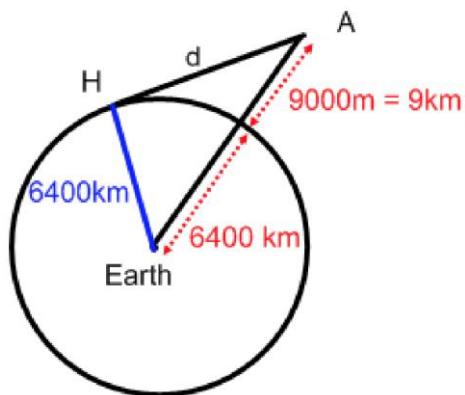
Ex 4) Since BM is a tangent, we know that $\angle OBM = 90^\circ$. Since we have a right triangle, use the Pythagorean Theorem to find side r.



Ex 5) Since BM is a tangent, we know that $\angle OBM = 90^\circ$. Find side r.



Ex 6) An airplane is cruising at an altitude of 9000 m. A cross section of the earth is a circle with a radius approximately 6400 km. A passenger wonders how far she is from a point, H, on the horizon she sees outside the window. Calculate the distance to the nearest kilometer.



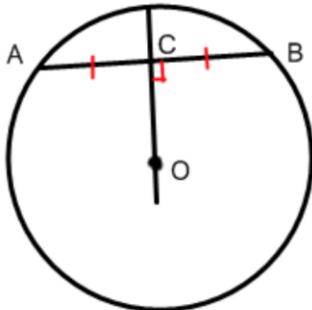
8.1 Assignment: Pg 388 #_____

8.2 Properties of Chords in a CircleSection Focus:

- Relate a chord, its perpendicular bisector, and the centre of the circle, then solve problems.

In any circle with center O and chord AB:

- If OC bisects AB, then $OC \perp AB$
- If $OC \perp AB$, then $AC = CB$
- The perpendicular bisector of AB goes through the center O.



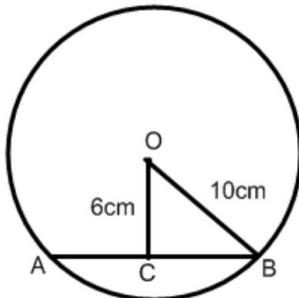
Remember:

Perpendicular means there is a

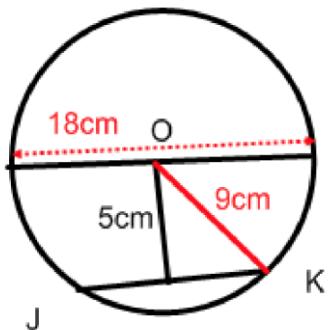
Bisector means it is divided into

If $AC = 10\text{cm}$, then $BC = 10\text{cm}$

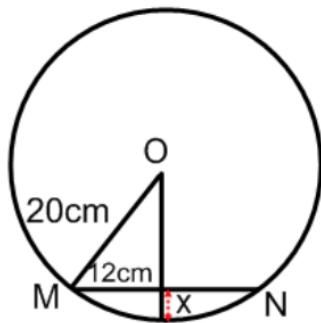
Ex 1) O is the centre of the circle. Find the length of chord AB.



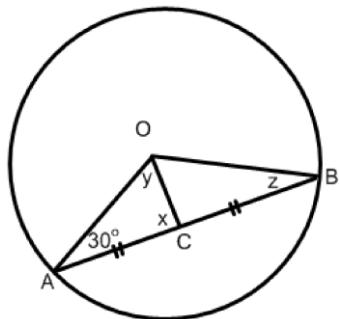
Ex 2) The diameter of a circle is 18 cm. A chord JK is 5 cm from the centre. Find the length of the chord.



Ex 3) A chord MN is 24 cm. The radius of a circle is 20 cm. Find the length of x.

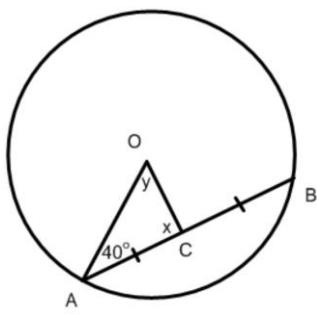


Ex 4) Find angle measurements x, y, and z.

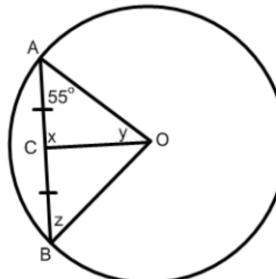


Try These!

a) Find angles x and y.



b) Find angles x, y, and z.



8.2 Assignment: Pg 396 #_____

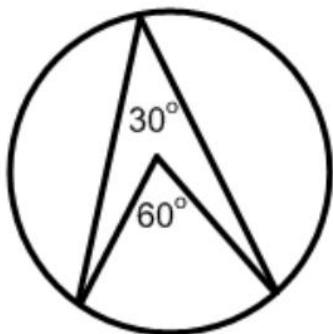
8.3 Properties of Angles in a Circle**Section Focus:**

- Discover the properties of inscribed angles and central angles, then solve related problems.

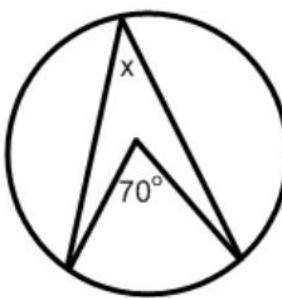
Central Angle and Inscribed Angle Property

The measure of a central angle is _____ the measure of an inscribed angle subtended by the same arc.

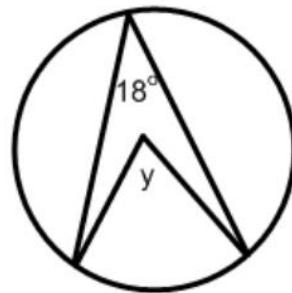
#1



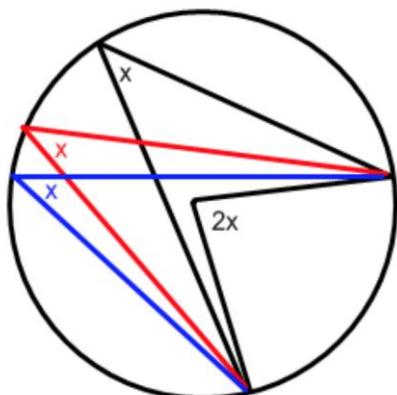
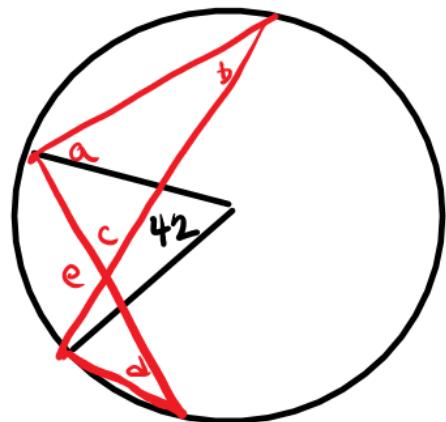
#2



#3

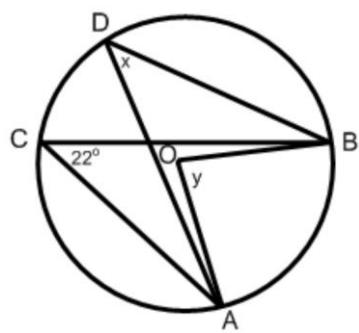
Inscribed Angles Property

Inscribed angles subtended by the same arc are _____



Which angles are 21 degrees?

Ex 1) Find the measures of angles x and y.



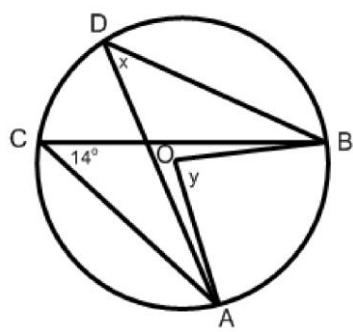
Find angle x

$\angle ACB$ and $\angle ADB$ are inscribed angles subtended by the same arc AB.
So, $\angle ACB = \angle ADB$.

Find angle y

Central angle $\angle AOB$ and inscribed angle $\angle ACB$ are both subtended by arc AB.
So, $\angle AOB = 2(\angle ACB)$.

Ex 2) Find angles x and y.



Find angle x

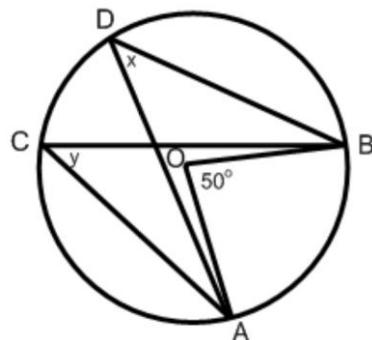
$\angle ACB$ and $\angle ADB$ are inscribed angles subtended by the same arc AB.
So, $\angle ACB = \angle ADB$.

Find angle y

Central angle $\angle AOB$ and inscribed angle $\angle ACB$ are both subtended by arc AB.
So, $\angle AOB = 2(\angle ACB)$.

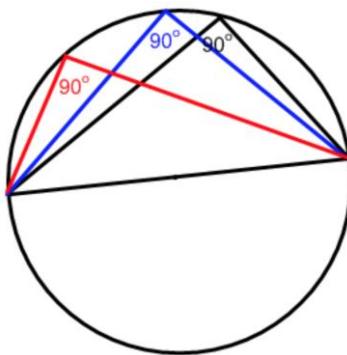
Ex 3) Find angles x and y.

Since both inscribed angles are subtended by the same arc as the central angle, $\angle ACD = \angle ADB = \frac{1}{2} \angle AOB$

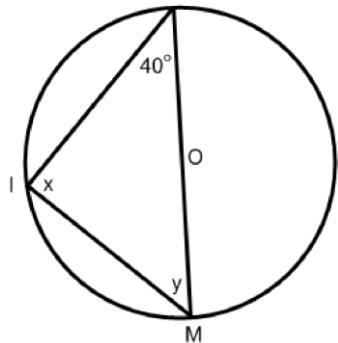


Angles in a Semicircle Property

Inscribed angles subtended by a semicircle (half the circle) are _____ angles.
This means that these angles are subtended by the diameter.



Ex 4) Find the missing angle measures.



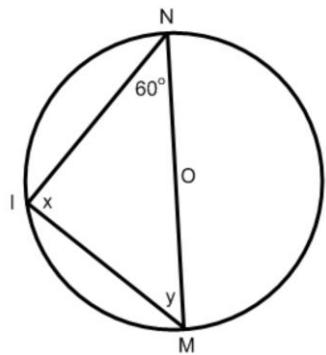
Find x

Since $\angle MIN$ is an inscribed angle subtended by a semicircle...

Find y

Since the three interior angles of a triangle add to 180° ...

Ex 5) Find the missing angle measures.

Find xSince $\angle MIN$ is an inscribed angle subtended by a semicircle...Find ySince the three interior angles of a triangle add to 180° ...**8.3 Assignment:** Pg 410 #_____

Optional Challenge Question: _____

Notes and Extra Questions: